[image 00520] 講演会のご案内(3月6日(木) 15:00-16:00@大阪府立大学 B4棟 西K-301室)
Motoi Iwata
iwata @ cs.osakafu-u.ac.jp
2014年 3月 3日 (月) 19:16:29 JST
Image-ML, Document-ML の皆様
大阪府立大学の岩田です。
Kaiserslautern大学の Tandra Ghose 教授をお迎えして、
下記の通り講演会を開催いたします。
ご興味がおありの方は是非ご参加ください。
事前登録等は一切不要です。
お知り合いにご興味をもたれる方がおられましたら、
お声をかけていただければ幸いです。
よろしくお願いいたします。
岩田 基
大阪府立大学 大学院 工学研究科
知能情報工学分野 第3グループ 助教
〒599-8531 大阪府堺市中区学園町1-1
TEL/FAX: 072-254-9281 内線6805
-------------------------------------------------
日時 :2014年3月6日(木) 15:00-16:00
場所 :大阪府立大学 B4棟 3階 西K-301室
講師 :Prof. Dr. Tandra Ghose
Department of Psychology, University of Kaiserslautern, Germany.
http://www.sowi.uni-kl.de/fileadmin/wpsy/public/ghose.htm
主催: 大阪府立大学 文書解析・知識科学研究所 (IDAKS)
講演タイトル:
Studying Perceptual Tasks in Different Domains using Eye-Movements
講演概要:
Perception is the process of gleaning information about the world in
order to interact with it in an optimal fashion. It includes deciding
where to look, how we read or do photo editing, for example. Scientific
investigation of perceptual processes include procedures, such as,
conducting explicit interviews for recording phenomenological
experiences or collecting manual response measures, such as, reaction
time, percent correct responses, as a function of some change in
stimulus property. These are coarse measures based on the final percept
and do not provide a detailed sampling of the cognitive processes
involved in acquiring information from the stimulus. Eye movement
measures provide richer sampling of the process of information
collection dependent on changing stimulus properties. I will present eye
movement based studies in domains that are crucial for bridging the gap
between human and computer vision. Firstly, I will present a study on
development of an implicit measure based on saccadic metrics for
strength of factors that bias perceptual grouping. Secondly, I will talk
about an eye movement based study for investigating the
information-content definition based on contextual probability that best
predicts reading of sentences. Finally, I will present some preliminary
data for collecting implicit knowledge of photo editing experts. This
technique supplements information from explicit interviews. Interviews
do not provide sufficient information about features that can be
directly used to train novices or develop software for image processing
that models expert behavior. Such studies for extracting implicit
features will help develop better technologies for human computer
interaction.
image メーリングリストの案内